Whole Earth Discipline: Why Dense Cities, Nuclear Power, Transgenic Crops, Restored Wildlands, and Geoengineering Are Necessary

Whole Earth Discipline: Why Dense Cities, Nuclear Power, Transgenic Crops, Restored Wildlands, and Geoengineering Are Necessary

by Stewart Brand
Whole Earth Discipline: Why Dense Cities, Nuclear Power, Transgenic Crops, Restored Wildlands, and Geoengineering Are Necessary

Whole Earth Discipline: Why Dense Cities, Nuclear Power, Transgenic Crops, Restored Wildlands, and Geoengineering Are Necessary

by Stewart Brand

Paperback

$24.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

“Incredible book . . . Best I’ve read this year.” —Jack Dorsey, via Twitter

This eye-opening book by the legendary author of the National Book Award-winning Whole Earth Catalog persuasively details a new approach to our stewardship of the planet. Lifelong ecologist and futurist Stewart Brand relies on scientific rigor to shatter myths concerning nuclear energy, urbanization, genetic engineering, and other controversial subjects, showing exactly where the sources of our dilemmas lie and offering a bold, inventive set of policies and design- based solutions for shaping a more sustainable society. Thought- provoking and passionately argued, this is a pioneering book on one of the hottest issues facing humanity today.

Product Details

ISBN-13: 9780143118282
Publisher: Penguin Publishing Group
Publication date: 09/28/2010
Pages: 352
Product dimensions: 5.40(w) x 8.30(h) x 0.80(d)
Age Range: 18 Years

About the Author

Though honored as a writer—with the National Book Award for the Whole Earth Catalog, Eliot Montroll Award for The Media Lab, Golden Gadfly Award for his years as editor of CoEvolution QuarterlySteward Brand is primarily an inventor/designer. Trained as a biologist and army officer, he was an early multimedia artist. He has created a number of lasting institutions, including New Games Tournaments, the Hackers Conference, and The WELL, a bellwether computer conference system. He is co-founder of Global Business Network, a futurist research organization fostering "the art of the long view."

What People are Saying About This

Wade Davis

"Orthodoxy is the enemy of invention. Despair an insult to the imagination. In this extraordinary manifesto, Stewart Brand charts a way forward that shatters conventional thinking, and yet leaves one brimming with hope. It has been years since I have read a book that in so many ways changed the way I think about so many fundamental issues."

Richard Rhodes

"After spreading the gospel of self-sufficiency with his inimitable Whole Earth Catalog, Stewart Brand now embraces science and engineering as the disciplines that will see us through the fast-approaching crisis of global warming. Brand's new book is like the man himself: smart, practical, wise and full of goodwill."--(Richard Rhodes, Pulitzer-Prize-winning, author of The Making of the Atomic Bomb)

Paul Romer

"If you care about future of the planet or about the contest between dispassionate discourse and crusading zeal, read this book from cover to cover and get ready to join the fierce debate it will spark."

James Lovelock

"Stewart Brand's timely and down to Earth new book gives me hope that his wisdom will help us prevent the Earth system breaking as the economic system has done. The last things we need are more theoretical models or visionary hi-tech. This book is truly important and a joy to read. It is a practical guide to damage limitation and a sustainable retreat to a far more efficient society."

Paul Hawken

"Stewart Brand defines iconoclastic, and has now raised the bar with the most important work of his lifetime, likely one of the most original and important books of the century. As the title connotes, the writing is about disciplined thinking. Shibboleths, ideological cant, and green fetishes are put to the side with the clarity and expertise gained by years of research and forethought, a mindbending exploration of what humankind can and must do to retain the mantle of civilization. The highest compliment one can give a book is 'it changed my mind.' It changed mine and I am grateful."

Interviews

The Barnes & Noble Review Interview with Stewart Brand

James Mustich: Your last book, The Clock of the Long Now, which explored the ideas between the world's slowest computer, was subtitled Time and Responsibility. Your new book, Whole Earth Discipline, engages both of those themes, albeit in less theoretical ways. An "eco-pragmatist manifesto," it is equally concerned with responsibility and time, but far more urgently.

Stewart Brand: I have two jobs. I work for Global Business Network, where we do strategic planning for large organizations, like governmental departments and corporations and so on. That's half of my time, and I'm paid. The other half of my time I work for the Long Now Foundation, where I'm not paid. My work there led to my book, The Clock of the Long Now: Time and Responsibility.

The book I just finished, Whole Earth Discipline, draws on the Global Business Network a lot more than it does Long Now, because it is really immersed in clear and present problems; it's full of very strong opinions on issues that are quite controversial. While the issues may have some of the same frames of thinking that Long Now has been engendering, I play down the Long Now aspect in the new book, in part because one of our rules at Long Now is we take no sides. That's how you keep an organization alive over centuries: you don't get in fights, because even if you win most of them, you only have to lose one, and then it's over. So it would be foolhardy for me to act as though the President of the Long Now Foundation is espousing these opinions. As the President of the Long Now, I have an interest in good information on all sides of the issues, but do not express a strong view. As somebody trained as a biologist years ago, and who has worked in the environment in various ways for a half-a-century, I have very strong opinions, and that's who wrote the book.

I draw on the Global Business Network experience because we got involved early in looking at climate issues for the Secretary of Defense's office, and that was part of what alerted me to the greater level of seriousness of those problems. Likewise with nuclear --we've been a little bit involved in some studies that gave me another perspective on that than I got from my fellow environmentalists. So the frame of reference indeed is much more present, but responsibility still is the overarching principle, and the global perspective is there in the title and there in the nature of the problems we face.

JM: Early in The Clock of the Long Now, you refer to a book by Patricia Fortini Brown called Venice and Antiquity, writing that the author "notes that the ancient Greeks distinguished two kinds of time, ‘ kairos (opportunity or the propitious moment) and chronos (eternal or ongoing time). While the first . . . offers hope, the second extends a warning.'" What you say after that strikes me as an almost perfect précis of Whole Earth Discipline, at least as I read it. You said: "Our dead and our unborn reside in the realm of chronos, murmuring warnings to us presumably, if we would ever look up from our opportunistic, kairotic seizures of the day."

SB: [LAUGHS]

JM: "This must be the Golden Age of Kairos we live in," you continue, "or the Mercury Age of Kairos -- fluid as quicksilver, shimmering . . . Poisonous. Thrilling." That juxtaposition of "poisonous" and "thrilling" resonated with my own reading of Whole Earth Discipline, because the pragmatism that you espouse in the new book -- a kind of visionary engineering, if we could call it that -- seems provoked by a perilous conflation of kairos and chronos that's caused by the climate change situation.

SB: That's a nice way to put it. In a sense, I'm taking an issue from the chronos realm and translating it into terms that make sense in the kairos realm. For the seize-the-opportunity crowd, that's also the whole idea of "clear and present danger" as it's put in American policy -- that the serving president and the Congress have to recognize clear and present danger when it happens, and do something about it. And climate, thanks to Al Gore and many others, has been moving from the multi-decade, really multi-century realm of chronos -- "Well, I guess it'll be pretty serious someday," -- the kairotic present -- "It's very serious right now and requires action right now." And action of the kind that we've never actually done before -- global scale action. I mean, we've never done it on purpose. Inadvertently, yes, many times, by inventing agriculture and so on. But to haul off and do things on a global scale on purpose requires forms of governance we don't have yet. There's no existing political agreements between nations, or even regions, that will stand up to what is called for here. So you see a lot of fumbling around, but it's great that at least the fumbling around is underway. For a quite a while there, even that wasn't happening.

JM: To go back to that juxtaposition of "poisonous" and "thrilling" for a minute. My first encounter with Whole Earth Discipline was when my younger daughter was ill one night, in great discomfort, and I was sitting up with her. It was in the wee small hours of the morning, and I started reading it, and I grew increasingly terrified as I made my way through the first chapter, because your description of the "scale, scope, stakes, and speed" of what the citizens of the world are up against is quite ominous.

SB: I've got a nice blurb from Edward O. Wilson, which begins, "This is a very scary book."

JM: Well, I agree with the eminent Mr. Wilson. Although the latter parts of the book, as I would discover as I reader further in the light of day, counters the scariness with a thrilling sense of possibility.

SB: Wilson, too, goes on to use words like "exhilarating" and so on, which is delightful. Most of the scary aspect comes from a realization that climate change is real and overwhelming, and from our ongoing ignorance -- we don't yet know all the dynamics of how it works. The more we find out, the more alarmed people get. Indeed, if you look at climatologists, or scientists in general, the ones who know the most about climate, and especially the ones who do the most fieldwork, are the ones that are typically most alarmed. Because the surprises they discover as they collect data and as they run their models -- almost all the surprises have been bad ones. Some of them are very public, such as the Arctic ice melting quite a lot faster -- like 40 years sooner -- than the general expectation from the climate models. When the scientists discover something like that, or indeed, politicians or environmentalists look at something like that, you sort of wonder, "If the model is wrong about that, what else is it wrong about?"

What I do in the book is try to explain some of the mechanisms, the dynamics of climate. It is such a severely non-linear system, which means that, under certain circumstances, small perturbations can have very large and sometimes relatively permanent effects. And so there's talk of "tipping points" and "thresholds", and especially "positive feedbacks" -- positive feedback being like the feedback you get when you stand in front of the speaker with a microphone and suddenly the hall is filled with a howl; it goes very quickly, and can be explosive and devastating. For instance, when the Arctic ice melts, you're losing a white surface of snow and ice, and replacing it with a dark surface of open ocean. Which means that the light that used to reflect off the Arctic is now being absorbed by the Arctic, and so, the more the ice melts, the hotter things get up there, and the more the ice melts -- that's positive feedback.

There are a lot of instances of this. Take the permafrost, which melts various forms of methane. Some are from bacterial activity, some from what are called methyl clathrates, or the clathrates that combine ice and methane. Those melt, and methane is 20 or 30 times more severe as a greenhouse gas than CO2, so that also warms up the region in the earth, and that means more permafrost melts and more methane comes out, and that's another positive feedback.

Part of what I'm doing in the book is lining up a bunch of the abrupt climate change mechanisms, showing ones that are already in process and some that are worried about, then pondering what happens when they exacerbate each other. I spend a lot of time quoting James Lovelock, the creator of the Gaia hypothesis and author of two of the best current climate books, one called The Revenge of Gaia and a more recent one called The Vanishing Face of Gaia. Jim is an old friend, so I checked with him personally to find out what transformed this rather gentle soul and optimistic character into what now sounds like the scariest voice about climate out there. It's not personality change -- he still is a pretty cheerful guy! [LAUGHS] But he is worried by the dynamics and by the data that he's seeing from climatologists. Because he is not owned by any particular institution whose reputation he has to be careful of, but is a free-standing scientist, like Charles Darwin, he can say right out loud exactly what he thinks the evidence is showing. And where he thinks things are going is to a much hotter earth, five or six degrees Celsius hotter, that has a carrying capacity of maybe one-and-a-half billion people. That is tough for a world that has -- what do we have now? six or seven billion -- because it suggests that in a few decades there will be a pretty severe dieback.

That's the level of seriousness, just from climate, that comes to the fore here. That's the major scary element. I think there are others. But they don't have the severity and the sense that we could lose . . . not the planet, but quite a lot of civilization if climate goes the way it's going.

JM: You go on to survey several areas that might help us mitigate, adapt, or ameliorate the situation. It's a very pragmatic approach. What's interesting is that central to your approach, I think, is a paradox that's summed up in what you say about environmentalists in a passage later in the book. At a very time one might think environmentalists are on the verge of triumph, you write:

 

Wrong. The long-evolved green agenda is suddenly outdated -- too negative, too tradition-bound, too specialized, too politically one-side for the scale of the climate problem. Far from taking a new dominant role, environmentalists risk being marginalized more than ever, with many of their deep goals and well-honed strategies irrelevant to the new task. Accustomed to saving natural systems from civilization, Greens now have the unfamiliar task of saving civilization from a natural system -- climate dynamics.

Would you elaborate on that a bit?

SB: There was a period of a sort of triumphalism say two years ago, when Al Gore's movie came out, An Inconvenient Truth. Al is a hardline environmentalist, and he won big, he got a Nobel Prize, he got the Oscar, and a lot of people were rightly alarmed by the movie and started rethinking things. The environmentalists themselves did not rethink much. [LAUGHS] I think they felt like they were exonerated on an issue that they'd been beating on for a couple of decades. Lo and behold, what they were warning about has come to pass, and they were right, and everybody else was wrong, and now all they have to do is push ahead.

But it's not that simple, and traditional environmental approaches are now being called into question. Environmentalists routinely say, "Nuclear is bad." Well, in terms of climate, nuclear is good. Environmentalists routinely say that genetically engineered food crops are bad. Well, in terms of climate and for a lot of other reasons, genetically engineered food crops are good -- in fact, quite Green.

And I don't know how the hell we're going to get out of the quandary caused be "Green" being equated with "liberal" or "Left." In Germany, for example, environmentalists are called "Watermelons" -- green on the outside, red on the inside; they're basically lefties. This kind of thing only exacerbates the split public view on climate. You can see a lot of it is split right down the liberal-conservative line, because a lot of conservatives who might otherwise take climate change seriously can't abide the idea of having to first admit that Al Gore was right about something. [LAUGHS] Gore is well aware of that, and so he tries to play down the political aspect of his own position in all this, but he's stuck with it. So at any given time you've got a lot of conservatives thinking they should be anti environmental issues, such as climate, because they're anti-liberal, and that confuses things. There's been a few efforts to improve that, but not enough.

I guess the other major issue that I see is that the scale, scope, speed, and stakes of climate change require way better science and very active engineering, and environmentalists have been kind of choosy about which scientists they deign to listen to, and pretty much against any large-scale engineering. That has to change, as we are facing serious engineering issues, and just being anti new technology, or anti exotic chemicals, or anti a gene being brought from one species into another species because "that's not natural" (it is natural, but that's another story) -- is an inadequate response to the technology. All this has to change for environmentalists to help with the kind of problems we're now facing.

My guess is that it will go several ways at once. There are already a large number of environmentalists who are quietly, sometimes noisily, pro-nuclear. There are some that are catching on that cities are Green things -- we used to think that villages and rural life was the epitome of Green, but we had that backwards. So there's movement. But I think the severity of the issues we're facing is going to need a lot more movement, and the approach that I espouse in the book is not a Romantic one. Do not be driven by Romanticism, or sentiment, or stories about how you think the world works. Try to figure out what actually does work, and then follow that even if it's against some sense of what's right in terms of natural systems. Natural systems are way more self-engineering than we acknowledge, and we need to figure out how they do that, and then step up to it and join the process.

JM: It's interesting to me to hear you highlight what is a counter-intuitive relationship between farm and city in terms of Greenness. In the book, you discuss, how climate has been a human artifact for a very long time, and the overwhelming impact that agriculture has had on creating that artifact. That was something I had never thought about before, and found revelatory. You illustrate how the human hand in shaping climate in big ways goes back a very long time, with farming in a way a culprit.

SB: The main villain from the Green standpoint is agriculture. It is the most radical thing humans have done to the landscape, to natural systems, to the earth, ever. Depending on how you count, something like 30% to 40% of the ice-free land area is devoted to one form or another of agriculture. Those are parts of the world, then, that don't, in a sense, participate in Gaia. They're not doing the usual balancing of microbially created gases and clouds and rain and the rest of it.

A paleoclimatologist named William Ruddiman has looked very closely at what seems to have been happening over the long time frame, 7,000 to 10,000 years. He's found some anomalies in the climatological record that are instructive. One astounding statement he makes in his book, Plows, Plagues, and Petroleum: How Humans Took Control of Climate, is that we should have had an Ice Age 2,000 years ago, and it may well be that the reason we didn't is us. The reason it hasn't happened is methane -- you get this from ice cores, and it looks like the amount of methane in the atmosphere started going up when it should have been going down. Ruddiman postulates that this happened, basically, when basically rice farming came in -- wet rice farming. Then he explored an earlier anomaly with CO2, and that seemed to bear relation to when agriculture in general first came in. Those are major pieces of what they call geo-engineering, direct human intervention in climate. If we'd done it intentionally, we would be preening ourselves for "Look how smart our civilization is; we were able to head off an Ice Age!" But it was just dumb luck.

Now we need to shift from that kind of dumb luck to taking charge of that kind of transformative activity. We need to understand it more completely than we have, and then intervene at that scale with the realization that it's happened before, so we're not completely at sea about what may happen. But it's whole new territory.

In fact, climate hasn't been natural for quite a while. The other shift in thinking that is difficult for a lot of people is caused by the realization that in developed countries, people in rural areas and even in suburbs use a whole lot more energy, are much less efficient, than people living in town. Basically, the most energy efficient way you can live is in Manhattan in an apartment, and take the subway to work and the elevator to your office.

JM: It's pretty damn hot today, I'll tell you, in Manhattan on the subway.

SB: [LAUGHS] I just spent some time in Southeast Asia, where it's hot all the time, and you see that as soon as people get some money, they buy an air conditioner. I realized that as the developing world becomes the developed world, which is happening very rapidly, its inhabitants are going to want a lot of grid electricity to feed the air conditioners that they are going to install just as soon as they can afford them. These are not people you are going to persuade to suddenly become very efficient and abstemious about energy, because they've finally got a bit of money, and they want to do the same things with energy that we do, and they see no reason why they can't.

But the main reason cities are Green in the developing world is not so much the energy differential, but the fact that there are 1.3-million people a week in the world who are moving into cities. They are leaving behind villages, and they're leaving behind subsistence agriculture, which was a poverty trap and an ecological disaster. As soon as those subsistence farms shut down, the wildlife comes back, the natural growth comes back, the water comes back. A whole continent starts to green-up as people move into town. In aggregate, the migration to cities a huge event.

JM: You make a survey of a lot of literature on the rapid urbanization of the world and on the ecology, if you will, of squatter cities. This again was eye-opening to me. Would you talk a bit about what you see going on there?

SB: The U.N. has really led the way in reconfiguring how we think about squatter cities. A sixth of humanity lives in slums and in squatter cities, places that people start living in near town, or in town, in order to be close to jobs. They live in shanties, and they don't often have the sanitation or electricity, or they steal electricity. Until about ten years ago, the standard view was that these were terrible problems, and that we must keep the people back on the land, and we have made various efforts to do that. These all failed, because people will move toward opportunity, toward jobs, toward participating in the cash economy -- so they go to town. One family member goes to town and kind of makes the case, then more family members come, and so on.

Some demographers and city planners are now saying that it is squatters who are building the world's cities. The largest amount of construction, in bulk terms, is being done by people building and improving their shanties. The shift is from treating this as a problem that must be somehow be fixed to understanding that it is actually a solution. And it's not just a solution in environmental terms. It's a solution in economic terms, because cities create wealth, they do it at every scale, right down to the rickshaw economy of just a couple of rupees a day; for people who have been outside the cash economy on subsistence farms, to get a couple of rupees a day is a big deal. They immediately have fewer children. They are able to get medical care and education for their children in town, and go to great efforts to make sure that happens. Instead of seeing these squatter cities as a huge, horrifying populace of people crushed by poverty, what people see now is a huge, zesty populace busy getting out of poverty just as fast as it can -- moving pretty damn rapidly, with lots of resourcefulness. Much of the most radical use of cellphones in the world these days is in the developing countries, where they turn cellphones into cash machines and put them to all sorts of ingenious uses that we're still catching up with in the developed world. And they often have a better cell signal than we get in California. [LAUGHS]

JM: The transformational role the cellphone is playing in the economic mobility of people in developing countries is fascinating.

SB: If you are growing crops out in the bush and want to sell them, you used to go through a sequence of middlemen between you and the market in town. With a cellphone, you can find out yourself what cassavas are selling for in town. That cuts out the middle people, because you knows what the real price is, and you may well truck it into town yourself. The cash economy follows the cellphone towers, and they're not only transferring knowledge -- they're transferring actual money. The remittances of a family member overseas who has a job in Europe or North America are sent back via cellphone. Banks are being reinvented banks around cellphones, as has how work is found. It used to be that typically in the informal economy of these squatter cities, when a job situation arose, you'd go and you'd wait in line somewhere, and hope for the best. Well, now you can wait on line in a cellphone, and be doing something else useful instead of just standing around getting hungry. And on and on. Basically, the $10 cellphone -- which is what they get down to in these areas -- is becoming the most revolutionary instrument there is. Pretty cool.

JM: Very cool. Would you explain the evolution of your views on nuclear power? You devote a very important section of the book to what one might call its promise rather than its peril. I think that, for many environmentalists, that will be a heresy.

SB: Yes. It would be fun to go out and collect the conversion experiences various environmentalists have had on this subject. What did it take to change their mind about nuclear?

Essentially, we've had to readdress an issue that we thought about 10-15-20-25 years ago; we pretty much had our stand and stuck to it. But when one goes and catches up on information, and has climate change so much in mind, it's an invitation to consider nuclear power in a different light, because it doesn't put out greenhouse gases nearly as much as the other energy forms, and is, in that sense, renewable. So you now see people who've had a strong feeling against nuclear changing their minds. I'm one of those, although to tell the truth I had a mild feeling against nuclear. I just thought that it was irresponsible to put onto future generations, quite a large number of generations, the issue of dealing with nuclear waste.

But the fact is, I borrowed the thinking on that. I didn't pay close attention to the information, and hadn't really thought through the talk that the stuff has to be isolated for 10,000 years, because any amount of it getting out would be terribly deleterious. That talk doesn't hold up at any level. What I realized, after a visit to Yucca Mountain in Nevada, is that all those projections assume that people are about the same 10,000 years from now, and they have the same vulnerabilities and the same technology and the same worries -- and that is so deeply impossible that the whole argument falls apart. It is based on a very, very strange idea of stasis in civilization.

That was the start with me. But others? Many younger environmentalists are comfortable with nuclear, because they weren't around when everybody got concerned about Chernobyl or Three Mile Island. They weren't around for the Cold War. They haven't crawled under a school desk to duck-and-cover under the specter of nuclear weapons. They just see nuclear as another technology, and they're young, so they like technology. They master cellphones and everything else faster than the grownups do, and don't see any reason that nuclear can't be something they master. So you'll see in the online forums, treehugger.com and so on, there's often a generational disjunct between older environmentalists saying nuclear is like original sin and the younger environmentalists saying, "No, nuclear looks like it works pretty well. It's got a couple of design issues; we can probably fix those -- let's get on with it."

Everybody's got their own story. Mine was a combination of climate and then thinking differently about what 10,000 years means in terms of people, and then starting to look at the data and realizing I've been lied [LAUGHS] to by my fellow environmentalists for years.

JM: If I read you correctly, you've found that the science really doesn't support the fear of radiation that has been bred in us.

SB: Yes. The deep dread of radiation is a peculiar one and a strangely selective one. Because radiation is used in medicine quite extensively and rather radically. In fact, there are starting to be concerns, genuine concerns that I support, about people getting too much radiation through CAT scans and x-rays and radiation treatments for cancer, and so on. That is really serious radiation, and it completely overwhelms what we allow our nuclear energy industry to do. Any nuclear energy site must emit no more than 15 milligrams a year to the public. But every woman who gets a mammogram is already getting twice that. We allow our astronauts 25,000 milligrams per shuttle mission. The background radiation in parts of Iran is 11,000 milligrams. Bear in mind that the amount of effort that has to be made in order to keep nuclear sites down to 15 milligrams coming out a year is huge. There's hundred of millions of dollars, billions of dollars being spent to do something which is probably -- well, is completely unnecessary. It's just the wrong scale, by quite a lot. So, radiation is our friend in medicine and our enemy in nuclear energy? That doesn't make sense.

JM: In discussing the accident at Chernobyl, you quote Robert Baker of Texas Tech, who, after close study, concluded that, "The world's worst nuclear power plant disaster is not as destructive to wildlife populations as are normal human activities."

SB: Yes, that's an agriculture story right there. Basically, they evacuated the area around the Chernobyl reactor. There's people living there now, and they're fine. But the fear factor was such that, according to one U.N. report, in the area of that part of Ukraine and that part of Europe, 250,000 abortions were had by women immediately following the Chernobyl event, and those were probably all wasted deaths. There's been no birth defects detected anywhere from Chernobyl, and indeed, there were no birth defects detected anywhere from Hiroshima or Nagasaki, where extensive research was done. People are imagining they're going to have children with fin feet or something, and that just isn't how it works. But then some of the biologists went in and started examining the animals in the area. Not only is the wildlife swarming back; some of them damn near glowed in the dark, but seemed to be healthy -- in fact, were healthy! A couple of guys from Texas went over there, Baker and Ronald Chesser, and they spent ten years in what's called the Red Forest, where all the pine trees died from the radiation. They're looking at mice and these mice are highly radioactive, yet completely healthy, having embryos that are completely healthy. They were just seeing ground truth that there was way less damage to animals in the area than we had imagined would be the case.

There's a whole body of theory that there is no lower limit to radiation in terms of cumulative damage. The people who hold that theory -- not widely regarded by scientists but widely listened to -- said, "There's going to be 500,000 cancer deaths from Chernobyl." The United Nations sent seven different agencies, and they came up with an aggregate report that said the most might be 4,000 deaths from Chernobyl, and that would be among the 600,000 people most exposed. Well, that's undetectable. Statistically, it's not an event that epidemiology could detect, because of that 600,000, 100,000 to 200,000 are going to die from cancer anyway -- because we all do, we all get old and cancer mostly gets us. Will some of them die earlier because of getting some of the radiation from Chernobyl? Yes. How many? They came up with a number of 4,000, but a conservative number may well be lower than that.

How many people died from Chernobyl? Well, the number is 57 -- nine children and a number of workers, many of whom were heroic. But we just had more people die in Russia in a dam power plant this week: it's up to 76 now, or something like that. Yet no dread seems to associate with that larger number dying from that, or the 5,000 at Bhopal. So there's something spooky and irrational and superstitious going on with radiation and with nuclear in general, but I think we're gradually getting over it.

JM: Many environmentalists also take a similar tack -- you might call it (I think you do in the book) an "original sin" approach -- to genetically engineered foods.

SB: I think the term "Frankenfoods" is revelatory in the sense that. First, it's a great coinage. Immediately, it raises all the fears you really want to raise, that this is some kind of Frankenstein monster that some evil scientist is conjuring up. Part of my brief, I guess, is that this is all, in a way, a set of Romantic notions, just as Mary Shelley's story about the Frankenstein monster is one of the great Romantic stories, written at the height of Romanticism. The classic Romantic message is, "Do not go against Nature" -- or, as religious people might say, "against God" -- "by putting genes from one organism into another; that's an abomination." (Let me add a footnote that's not in the book, which is that recently the Vatican came out quietly with a report saying that genetically engineered food crops for the developing world are an important moral imperative, and pay no attention to our Pope who thinks it's somehow wicked.)

JM: [LAUGHS] Pay no attention to the man in front of the curtain.

SB: Right. In this area, as in nuclear, as people get closer to the real data and take a pragmatic approach to it, then they start to realize that the notion that there's something unnatural about moving a gene from one organism into another in order to get some benefits is actually the norm in most of nature. In microbes they're swapping genes around all the time, and it happens in the so-called "higher organisms" a fair amount spontaneously anyway. Indeed, if you want to be worried about some particular form

From the B&N Reads Blog

Customer Reviews